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Abstract 

A shifting demographic of people admix cannabis with cholinergic agents, intent upon enhancing 
cannabimimetic effects or reducing adverse effects. Augmentation of cannabimimetic effects with 
tobacco (or nicotine) has been corroborated by in vitro mechanistic studies, animal behaviour stud-
ies, anecdotes from patients, and one clinical trial. The mechanism may be pharmacokinetic and 
pharmacodynamic. This trend of adultering cannabis with tobacco poses a problem because of the 
adverse effects of tobacco; solutions are suggested. The grey literature also reports admixtures of 
cannabis and calamus root, with the intent of reducing adverse effects of cannabis. At least one 
compound in calamus root (beta-asarone) blocks acetylcholinesterase (AChE). Contrary to expec-
tations, AChE blockade diminishes cannabimimetic effects. Obviously more research needs to be 
done.  
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Introduction 

Black market cannabis (marijuana, hashish) has a che-
quered history of contamination and adulteration. Con-
tamination largely consists of fungi, bacteria, and pes-
ticide residues. Contamination and adulteration differ 
by intent. Adulteration is volitional. Cannabis may be 
adulterated with other psychoactive compounds, for 
primarily two reasons: the adulterant may enhance 
efficacy in low-quality cannabis, or the adulterant may 
mitigate the side effects of cannabis.  
This article enlarges upon a case series by McPartland 
et al. [1], who described cannabis adulterated with a 
variety of compounds that share a common trait—cho-
linergic modulation. This trend is not new. In India, 
cannabis has long been adulterated with cholinergic 
dhatura (Datura metal), henbane (Hyoscyamus niger), 
betel nut (Areca catechu), and it was mixed with to-
bacco (Nicotiana tabacum) shortly after the Portuguese 
imported tobacco to India from Brazil [2]. Cholinergic 

compounds may substitute for endogenous acetylcho-
line (ACh) at nicotinic acetylcholine receptors 
(nAChRs) or at muscarinic ACh receptors (mAChRs), 
or block acetylcholinesterase (AChE), the enzyme that 
breaks down ACh. This article will focus upon two 
cholinergic compounds: ubiquitous tobacco, and enig-
matic calamus (Acorus calamus).  
 
Tobacco and nicotine 

The case series by McPartland et al. [1] was not the 
first to report that tobacco augments the „cannabimi-
metic” effects of cannabis. The English prohibitionist 
Whitelaw Ainslie [3] stated tobacco enhanced cannabis 
intoxication. From a different perspective, O'Shaugh-
nessy [4] noted that dhatura, another cholinergic herb, 
increased the effects of cannabis. Fishbein [5] de-
scribed patients who „dipped” tobacco cigarettes in 
fluid extracts of pharmaceutical-grade cannabis avail-
able in the early 1900s. A recent comparison of canna-
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bis-using chronic pain patients versus recreational 
cannabis users revealed a higher rate of admixing can-
nabis and tobacco in the chronic pain patients [6]. An 
independent chi square analysis of that data shows the 
higher rate in chronic pain patients approached statisti-
cal significance (p = 0.14). 
Demographic trends regarding the admixture of canna-
bis and tobacco seem to be shifting. Fewer people in 
some European countries including Germany may add 
tobacco to cannabis, as hashish consumption has been 
replaced by marijuana consumption (F. Grotenhermen, 
pers. commun., 2008). Currently, up to 80% of canna-
bis is mixed with tobacco in England [7]. Within the 
past 15 years in the US, tobacco has gained a reputa-
tion for enhancing the cannabis „high” amongst urban 
youth [8]. This belief and the practice of admixing 
tobacco and cannabis has grown into a cross-cultural 
phenomenon. In a recent survey of US university stu-
dents, 40.5% of respondents admitted to mixing canna-
bis and tobacco, and 18.9% reported that they smoked 
tobacco to prolong and sustain the effects of cannabis 
[9]. This phenomenon has been verified in animal stud-
ies that show nicotine enhances tetrahydrocannabinol 
(THC) discrimination [10], and enhances some of the 
effects of THC or synthetic cannabinoids [11-17]. On 
balance, a few studies report no interactions or negative 
interactions (e.g., [18]). One human clinical trial re-
ported that nicotine enhanced the cannabis „high” in all 
subjects, but caused greater stimulation in male sub-
jects and greater sedation in female subjects [19]. 
 
Tobacco pharmacokinetics 

The mechanisms underlying this phenomenon remain 
unknown. The literature is full of mechanistic studies 
regarding the effects of cannabis upon tobacco, but 
rarely the reverse. Several authors have proposed a 
pharmacokinetic mechanism; the four facets of phar-
macokinetic mechanisms are drug absorption, distribu-
tion, biotransformation, and elimination [20].  
1. Absorption of THC may be improved by mixing 
hashish with tobacco. The tobacco enables hashish to 
remain lit, serves as filler, and smoothes the inhalation 
of poor quality hashish [21]. An improvement in burn-
ing efficiency (amount of THC released per gram of 
cannabis in a smoking machine) was documented by 
van der Kooy et al. [22], who concluded that mixing 
cannabis with 50% of tobacco might lead to inhaling a 
similar amount of THC as a 100% cannabis cigarette.  
2. Distribution of THC in the blood and brain may be 
altered by compounds in tobacco (nicotine and po-
lyaromatic hydrocarbons) by competing for available 
lipoproteins and albumin in plasma. Furthermore, to-
bacco compounds may alter blood-brain barrier perme-
ability [1]. 
3. A biotransformation mechanism was proposed by 
Starks [24], who suggested tobacco transformed can-
nabidiol into THC, which seems unlikely. Two cyto-
chrome P450 enzymes, CYP2C9 and CYP3A4, bio-
transform THC into the active 11-OH-THC metabolite 

and the inactive THC-COOH metabolite [20]. Nicotine 
likely does not alter these enzymes (CYP2B6 is the 
main enzyme that metabolizes nicotine), but other 
compounds in tobacco might alter CYP2C9 and 
CYP3A4. In support of this hypothesis, smoking a joint 
containing THC 29 mg plus tobacco produced a peak 
THC-COOH / 11-OH-THC ratio of 3.4 (data from 
[23]), whereas smoking a joint with approximately the 
same amount of THC but no tobacco produced a peak 
THC-COOH / 11-OH-THC ratio of 6.4 (data from 
[25]) — nearly twice the amount of inactive metabo-
lite.  
4. Elimination of THC via the faeces and via the urine 
might be affected by tobacco, by an unknown mecha-
nism.  
 

Tobacco pharmacodynamics 

Instead of pharmacokinetics, McPartland et al. [1] 
proposed that tobacco altered the pharmacodynamics 
of THC (its targets and mechanism of action). Valjent 
et al. [12] argued that the effects of nicotine plus THC 
were not merely additive effects, instead the research-
ers proposed a synergistic interaction between the en-
docannabinoid and nicotinic systems. Synergistic ef-
fects are implied in studies where cannabinoids and 
nicotine are simultaneously administered, whereas 
sensitising effects are implied in studies where previ-
ous administration of nicotine alters the effects of can-
nabinoids. Sources of synergy between these systems 
include the following: 

• upregulation of receptors and ligands;  
• interplay and dimerisation at the receptor 

level;  
• release of third-party neurotransmitters, such 

as nitric oxide;  
• intertwining downstream signal transduction.  

Nicotine may upregulate the density of cannabinoid 
receptors in the brain, sensitising individuals to the 
effects of cannabinoids [26, 27]. Nicotine may augment 
the levels of endocannabinoid ligands (AEA and 2-AG) 
in some brain regions [28, 29]. Endocannabinoids sub-
stitute for THC in animal drug- discrimination studies 
[29, 30]. Given the ability of the cannabinoid receptor 
(CB1) to cross-talk with other receptors [31, 32], it is 
tempting to speculate that CB1 and nAChR form a 
heterodimer. The combination of cannabinoid and 
nicotinic drugs have been shown to release third-party 
neurotransmitters (e.g., nitric oxide), and possibly 
involve downstream second-messenger mechanisms 
[12, 18]. The interaction of cannabis, endocannabi-
noids, and nicotine no doubt varies by species, gender, 
age, and brain region. The multifaceted effects of nico-
tine may be due to the heterogeneity of nAChR subunit 
compositions, and single nucleotide polymorphisms 
(SNPs) expressed in the population. This heterogeneity 
is ramified by nAChR downregulation, agonist traf-
ficking, and exogenous cholinergic agents modulating 
the synthesis of endogenous ACh [33]. 
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Acetylcholinesterase inhibition 

Acetylcholinesterase (AChE) is an enzyme that cata-
bolises ACh. Compounds that block AChE (anti-
AChE) will augment synaptic ACh and therefore en-
hance nAChR signalling. AChE blockade also en-
hances signalling at muscarinic ACh receptors 
(mAChRs). Eight in vitro studies demonstrated that 
mAChR agonists such as ACh, pilocarpine, carbachol, 
and oxotremorine reliably augmented endocannabinoid 
release and consequential CB1 signalling (see review 
in [1]). Animal studies have shown that pilocarpine and 
oxotremorine increased the effects of THC [10, 34]. 
 Based on the evidence that nAChR and mAChR ago-
nists augment the effects of cannabinoids, we would 
predict that anti-AChE compounds do the same. But 
they apparently do not. In animals studies, physostig-
mine (anti-AChE as well as a mixed nAChR and 
mAChR agonist and a nAChR allosteric agonist) enig-
matically decreased THC discrimination [35], THC 
sedation [36], and THC memory deficits [37, 38]. In 
one clinical report, physostigmine decreased the THC 
„high,” tachycardia, red eye, and dry mouth, although 
the patient experienced greater sedation [39]. 
Calamus root (Acorus calamus) contains beta-asarone, 
an anti-AChE compound [40]. Reports in the grey 
literature describe calamus diminishing cannabimi-
metic effects (e.g., [41]). Adding a „pinch” of dried, 
powdered calamus per pipe bowl of cannabis provides 
„mental clarity and memory enhancement” [42, 43]. 
Adding calamus to cannabis dates to ancient India; 
according to Ayurvedic medical texts, calamus „bal-
ances” and „neutralizes the toxic side effects” of can-
nabis [44]. The Ayurvedic usage of calamus as a seda-
tive contradicts its traditional use by North American 
Cree Indians as a stimulant; the discrepancy may be 
due to pharmacological differences between Asian and 
American A. calamus [45].  
 
Conclusions 

Animal studies [17] and human anecdotes [1] indicate 
that tobacco augments the medicinal benefits of canna-
bis. Physicians must discourage this practice. The use 
of cannabis by itself carries risks, but adding tobacco 
massively augments adverse effects. By mixing canna-
bis with tobacco, cannabis may be regarded as a 
„gateway” to tobacco dependence, a reversal of the 
typical developmental sequence for substance-use 
initiation [46].  
Providing patients with better quality cannabis might 
serve as an alternative to adulteration; a legal and regu-
lated supply might solve the problem. Legal breeders 
of Cannabis could modulate the cholinergic effects of 
Cannabis itself; the plant naturally produces many anti-
AChE compounds, such as limonene, limonene oxide, 
α-terpinene, γ-terpinene, terpinen-4-ol, carvacrol, l-
carvone, d-carvone, 1,8-cineole, p-cymene, fenchone, 
pulegone, and pulegone-1,2-epoxide [47-50]. 
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